SURREY ZOOLOGICAL GARDENS.

AL-FRESCO PAINTING OF ICELAND AND ITS VOLCANES.
ICELAND AND ITS VOLCANOES.

Mount Hecla; the Geysers; Reykium Springs; Laugarvalla; Krusivik; Basaltic Coast of Stappen, and Snæfell Yökul, &c.

The annexed engraving represents a pictorial novelty of no common interest and attraction, which has just been substituted for the view of Vesuvius, upon a similar extensive scale, at "the Surrey Zoological Gardens." The picture has been painted by Danson, and entirely occupies one side of the lake: it is the same erection as that used for Vesuvius, with the additions of the distant mountains, about seventy feet in height, and about thirty feet width of view. The picture is altogether a successful specimen of scenic effect; which it is proposed to heighten hereafter by imitative eruptions on stated evenings, and thus to present a perfect model in miniature of this celebrated spectacle de la Nature. The exhibition must altogether be regarded as of a very superior class of representation, which we hope to see multiplied; for no species of knowledge is more calculated to improve the minds and hearts of the people than an accurate acquaintance with such stupendous curiosities of nature as are grouped upon these regions of subterranean heat and surface cold.

There is not, probably, a more wondrously-fraught spot upon the face of the globe than the heart-shaped island of Iceland, lying in the North Atlantic, on the verge of the Polar Circle, and extending from 63 deg. 24 min. to 66 deg. 30 min. N. lat., and from 14 deg. 15 min. to 24 deg. 40 min. W. long. Its north-western extremity, Cape Nord, is about 200 miles from the east coast of Greenland; and its area is vaguely reckoned at 40,000 square miles. It is crossed from east to west by ridges of rugged mountains, whence branch numerous offsets towards the coast, terminating in high and steep promontories; and between these offsets are grass-clad valleys, in which the inhabitants have erected their dwellings. But, the interior of the island is a blank desert, through which one may travel 200 miles without meeting any trace of human existence. "It consists partly of snow mountains, called Yökuls, many of which are also volcanoes; and partly of vast tracts covered with lava, scoriae, and volcanic sand. There are also several lakes. The most extensive mass of icy mountains is that called Klofa Yökul, in the south-east part of the island, which lies behind another range of mountains that line the coast, and forms a mass of ice and snow estimated to cover no less than 3,000 square miles. Magnificent glaciers cover the sides of the mountains, beginning at a great height, and sloping with a very rapid descent towards the plains. These ice masses are often rent by the internal heat and eruptions of the volcanoes, and fall down in terrible avalanches upon the plains. The glaciers present the same phenomena of progressive, and sometimes, retrograde motion as those of Switzerland, and they throw out before them their moraines of large fragments of rocks. Vast agglomerations of basaltic pillars are seen in many places, as well as of tufa, and some mountains are covered with thick incrustations of sulphur." There are numerous springs which throw up columns of boiling water, preceded by a report like that of artillery. There are also sulphur-springs, floods or bogs of boiling mud, cones and craters of quiescent volcanoes, and columns of dense smoke and steam issuing from many spots. The whole island appears to be of volcanic formation; and so terrific have been the eruptions, that about 56 years since the ashes and effluvia corrupted the water and atmosphere, the fishes were driven from the coast; and pestilence and famine followed, which, in two years, carried off 9,000 people, and destroyed thousands of horses and cattle. Indeed, such calamities appear to have thinned the inhabitants from the earliest times: the present population of Iceland being about 50,000, whereas, in former ages, it exceeded 100,000.

Such are the main physical features of this extraordinary region to the mind of the philosophical traveller, who alone can fully appreciate the sublime phenomena of creation and decay which Iceland presents. But, there is a popular interest attached to these scenes of "the wild and wonderful," which, in conjunction with the spread of education and the diffusion of science, is extending itself amongst all classes. The entrepreneurs of "the Surrey Zoological Gardens" have, therefore, chosen well and wisely in their pictorial representation of these sublimities of Nature. The several objects are not placed topographically, but are grouped in what is termed, by the artist, "a modelled tableau," of which Hecla may be regarded as the nucleus, or central figure. We shall, therefore, proceed to describe them according to the enumeration at the head of the present page, which nearly presents their respective localities in Nature.†

* Penny Cyclopaedia: see Iceland.
† One hundred and twenty works are stated to have been published on Iceland, but few are known to the English reader; the greater number being in the Danish, Swedish, German, or Icelandic languages—some few in Latin. Shakspeare was not wholly ignorant of Iceland; for, in Henry V. he speaks of "the prick-eared cur of Iceland;" the common dog of Iceland has short erect ears. One of the earliest accounts of the country is by a French doctor, who accompanied a party of traders to the north, in the year 1670; the writer "went to see" Mount Hecla. The next account known to the English reader, is that by one Anderson, a burgo-master, at Hamburg, who, however, picked up his information from masters of ships trading to Iceland. He was succeeded by Horchow, a Dane, who resided on the island two years. Olafsen and Povelisen surveyed Iceland in 1757; and their account contains much information, mixed with error. Of our own countrymen, Sir Joseph Banks speaks that he was accompanied by Dr. Solander, the Swedish naturalist, and by Dr. Von Trolt, who afterwards published an account of his journey, which first made the English reader acquainted with Iceland. In
Hecla is in the southern part of Iceland, and about thirty miles from the coast. It is neither the most elevated nor the most picturesque of the Icelandic mountains, but it has become famous by its tremendous eruptions. Twenty-three of these have been recorded since the year 1004; but this statement is far from complete. Hecla has now been quiet for more than sixty-five years, and remained tranquil more than seventy years before the last eruption in 1772. The summit is divided into three peaks, the middle of which is the highest. The craters form vast hollows in the sides of these peaks, which are mostly filled with snow. The mountain consists mostly of sand and slags; the lava, forming a rugged and vitrified wall, like glazed bricks, seventy feet high, around its base. When Sir George Mackenzie ascended Hecla, in 1810, the vapour of water was ascending from the middle peak, and the heat of the mountain was so intense that a thermometer placed among the slags rose to 144°. Mr. Barrow did not ascend Hecla, which he compares to the majestic "three-forked" Parnassus. The people in the neighbourhood, it seems, attempt to dissuade every one from ascending. The French doctor, already mentioned, was assured that it was the entrance to the infernal regions, and that the devil was busily employed in handing down the souls of all those who had fallen in battle. Sir Joseph Banks was told that the mountain was guarded by strange black birds, resembling crows, having beaks of iron, with which they would receive ungraciously any one who infringed upon their territory. Sir Joseph found the mountain surrounded for two leagues with scoria, covered with ashes, and ashes. On reaching the summit, which was calculated, by a Ramsden's barometer, to be 5000 feet, the cold was extremely severe; and the party had their clothes covered with ice, in such a manner that, to use his own expression, "our clothes resembled buckram." The surrounding country was formerly inhabited almost close to the mountain, and said to have been uncommonly beautiful and fertile; but the successive inundations of lava have entombed the farms, and the verdant meadows have been almost entirely covered with sand and pumice. In the last eruption, the shower of ashes, &c. was carried by the wind, and fell like rain on the Ferroe islands, 300 miles distant.

The Geyers.

The very appropriate term Geyser is derived from the Icelandic geysa, "to rage, burst forth with violence and impetuosity." (Henderson.)* These springs are in the neighbourhood of Hecla. "On entering the plain," says Mr. Barrow, "we were at once in the midst of smoke and steam, rising above and around us, and of boiling springs of bogs and heated mud at every step we took. The ground seemed to be shaking and trembling under our feet; and below we could hear a sort of murmuring or rumbling noise, not unlike that of distant thunder." The Great Geyser is situated on a mound which rises considerably above the plain, and slopes on all sides to the distance of about 100 feet, from the borders of the large basin on its summit; in the centre of which, forming as it were a gigantic funnel, is a pipe, up which the boiling water rises and bursts forth. The basin of this funnel is from four to five feet deep, sloping a little, like a saucer, towards the central tube. Mr. Barrow found the temperature of some water in the basin to be from 180 deg. to 190 deg. Fahrenheit. The sides of the tube were smoothly polished, as was the floor of the basin, which had the appearance of agate. Mr. Barrow considered it difficult to imagine how this perpendicular tube was first shaped, and how the smooth crust, with which it has been lined, was originally laid on—whether at once, or by successive depositions of the siliceous matter. The lining of the basin is of easier explanation: the water remaining therein quiescent, may deposit its silica undisturbed, whilst in the pipe of the funnel it is always bubbling or boiling, higher or lower, or exploding steam and water. "But after all, that which is the most difficult to comprehend is—that the water of the Geyser is perfectly clear, and gives no deposit without the application of chemical tests, and then only in the smallest possible quantity: it may be kept for years in

* The Bishop or rector of Straholt told Sir Joseph Banks, that it was derived from gisao—emoucre, obliter. It is so; but the derivation is not obvious.

The verb is pres. gisao, pret. gauo, inf. gisao.—Dictionarium Islandicum Georgii Hickasti, &c.—Barrow.
bottles without depositing the least sediment.” Mr. Barrow then describes the matter deposited on the rim, almost out of the reach of the hot water, which is from the condensed steam or vapour, and delicately efflorescent. The siliceous incrustations that are here formed, extend down the slope of the mound around the brim, and several yards below it. The delicate deposit is siliceous sinter, or travertine; “the only difference of the substance, well known under this name, being, that the one in question is a deposition of flint, and the other of lime. The stream of water that flows from the basin, finds its way down the slope of the mound, and at the foot thereof divides itself into two branches;” on the margin of which, are ferns, bead, or efflorescent incrustations, which sometimes cover the grasses and aquatic plants along the banks of these occasional streamlets. Every adventitious fragment, whether of wood, bone, or horn of animal, is here found in a silicified state; and Mr. Barrow saw here a piece of printed paper, which, with the letters perfectly legible, exhibited a thin plate of transparent silex, giving it the appearance of a horn-book. A worsted stocking, by lying on the banks of this stream about six months, had been completely converted into stone, as had also a blue handkerchief, exhibiting the cheques and colours of the original; both were as hard as silex itself. The streams, it should be added, are lined with a white close siliceous stone, resembling pure marble, which continues down to their junction with the Huit-aa, or White River. Mr. Barrow shot some plowers and curlews, which, on being placed in the basin of the Great Geyser, were sufficiently cooked in twenty minutes, the temperature of the water continuing to vary from 180 deg. to 190 deg. Fahrenheit. The steam from this and from the other Geysers is impregnated with the smell of sulphur: Mr. Barrow filled a bottle with the beautiful clear water, which at the moment certainly had a strong smell of sulphur; but, though firmly corked on the spot, it had lost it altogether on his arrival at London fire-plug: but all of them threw out steam, like so many safety-valves; i.e. whilst a rumbling noise was heard from beneath, apparently at a very great distance from the surface. From its situation and its height on the side of the hill, above the other springs, and particularly from its violence, Mr. Barrow considers it to be that same chimney, from this great subterranean laboratory, which Sir John Stanley has named the Roaring Geyser; though Mr. Barrow only saw it emit steam and no water, with a ceaseless roaring noise.

Mr. Barrow next notices the Strockr, the shaker, or agitator, a large opening or tube, almost even with the general surface of the ground: at twelve or fourteen feet deep appeared water in ebullition, which, on pieces of turf and peat being thrown into it, burst forth almost instantaneously, heaving up a column of mud and water, with fragments of peat as black as ink, to the height of sixty or seventy feet; the steam bursting up with such violence that it seemed to tear up the very earth through which it passed; it continued for eight or ten minutes, and then sunk into the shaft. Near this geyser was another, called the Little Strockr, at the head of a group of a dozen springs, two of which only threw up water from two to three feet high, in jets resembling those seen on opening a London fire-plug: but all of them threw out steam, like so many safety-valves; the temperature being about 210 deg. In the vicinity of the Roaring Geyser too are a number of red, grey, and brown mud springs, of the temperature of 195 deg., which made the ground dangerous. One night a servant sat up to watch the Great Geyser, and, at about three o’clock in the morning, he called up Mr. Barrow, who saw the shaft discharge a full column of water and steam, estimated at between seventy and eighty feet high. Mr. Barrow then notices that what he calls steam is not that pure unmixed steam, which vanishes when it

in many places it was dangerous to approach within several feet of the margin, as the overhanging earth was hollow underneath, supported only by incrustations, which, on being seen obliquely, exhibited a beautiful azure blue colour. Near the margin of these clear springs were some small ones of mud of a deep red colour. Neither a drawing nor description, however, is capable of giving a sufficient idea of the singularity and beauty of this spot.

Mr. Barrow watched anxiously for an eruption of the Great Geyser, and was nearly drowned with scalding water of the temperature of 150 deg., but no eruption then took place. The noise from this Geyser was much louder than that from any other, and resembled the letting off of steam from the boiler of a steam-vehicle; whilst a rumbling noise was heard from beneath, apparently at a very great distance from the surface. From its situation and its height on the side of the hill, above the other springs, and particularly from its violence, Mr. Barrow considers it to be that same chimney, from this great subterranean laboratory, which Sir John Stanley has named the Roaring Geyser; though Mr. Barrow only saw it emit steam and no water, with a ceaseless roaring noise.
escapes into the open air, but is mixed with a kind of smoke and spray from the boiling water, that require some little time to dissolve, and leave the atmosphere clear. In about four hours from the above eruption, a second rose between ten or twelve feet; in another hour, a third, to the height of thirty feet; and in about two hours more, the fourth eruption rose to about the same height. The appearance of the column, wholly or partially enveloped in clouds of steam and vapour, and the colours changing their hues as the sun or clouds intervene, is a phenomenon too astounding and beautiful for representation.

The power of the Great Geyser appeared to Mr. Barrow to be on the wane: his party agreed that its strongest eruption did not raise the column of water above eighty feet; whilst, by other travellers it has been stated as under:

<table>
<thead>
<tr>
<th>Traveller</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olafsen and Povelsen</td>
<td>360 feet</td>
</tr>
<tr>
<td>Sir John Stanley</td>
<td>90</td>
</tr>
<tr>
<td>Mr. Hooker</td>
<td>100</td>
</tr>
<tr>
<td>Sir George Mackenzie</td>
<td>90</td>
</tr>
<tr>
<td>Mr. Henderson</td>
<td>150</td>
</tr>
</tbody>
</table>

The first is considered by Mr. Barrow to be a gross exaggeration; for "it has been ascertained, by direct experiment, that no momentum given to a column of water, issuing from a pipe, will throw a perpendicular jet to the height of ninety feet: that at Versailles, the Grand Eaux play only to the height of eighty feet; and that, by an experiment made of applying a double force, they could not succeed in raising the column to ninety feet." Mr. Hooker, Mr. Barrow thinks, may have mistaken the height of the jet by the steam which is carried up with it; and taking a mean of the remaining three, we have ninety-two two-thirds; or, if our estimate of eighty feet be taken into the account, we have eighty-six feet for the average height, which, may, perhaps, be about the truth; although the fact of Sir John Stanley having ascertained geometrically, by means of a quadrant, the greatest height to have been ninety-six feet would seem to put conjecture out of the question. But Sir John Stanley states the maximum jets of the New Geyser to be one hundred and thirty-two feet—though not by the quadrant: he observes: "Nature nowhere offers objects bearing a resemblance to the Geysers; and art, even in constructing the water-works of Versailles, has produced nothing that can at all illustrate the magnificent appearance of the Geyser: "imagination alone can supply the noise and motion which accompany such large bodies of water bursting from their confinement, and must be left to paint what I have not been able to describe—the brilliancy of colouring,—the purity of the spray,—the quick change of effect,—and the thousand varieties of form into which the clouds of steam, filling the atmosphere on every side, are rolled incessantly."*

Von Troil's theory of the Geysers is, that they all proceed as if from one great cauldron; that, in emitting steam, they resemble so many safety-valves of a steam boiler, adds Mr. Barrow; and, if Von Troil be correct, it is not improbable that the strength and frequency of the Great Geyser should be diminishing, each little tube and every fresh aperture carrying off a portion of the steam. Mr. Barrow could scarcely identify this correspondence in the eruptions of the different springs; although he acknowledges that, previous to the eruptions of the Great Geyser, all the diminutive ones were in great activity, as if the fires had been stirred up for some grand occasion. If we receive the above theory, the safety-valves may be the means of preventing a catastrophe, such as the choking up of some of the larger ones might bring on, at any time; namely, a general explosion of that perforated and tumultuous crust of earth out of which they all rise, and the conversion of the whole area into one vast pool of boiling water. The Roaring Geyser, though it still roars, like the bellows of a blast furnace, has been so choked by large stones and earth falling into it from the mountain above, that it has ceased to throw out water; and, if stones and earth continue to fall into it, the violence of the steam must make for itself a passage in some other quarter.

Mr. Barrow rightly considers steam as the proximate cause of all these extraordinary eruptions of hot water; the spectator is everywhere surrounded with steam; he sees it—he hears it—he feels it, and he smells it, impregnated with a small portion of sulphur. We know the projectile force of the elasticity of steam to be much increased, by the direction, the smoothness, and the form, of the cylinder; but, if it be asked where the fire is that produces all the steam and boiling water, no one will be hardy enough to assign a local habitation to that element which Sir Humphry Davy has called, 'an unceasing fire in the laboratory of Nature,'—that first operative cause which leaves up mountains—compels them to vomit forth red-hot lava—renders open deep chasms in the surface of the earth, and supplies the fountains of the Geysers with boiling water and steam." A question may be raised, whether the same fire that supplies steam

* An Account of the Hot Springs of Iceland. p. 44.
for the Geysers, melts the streams of lava that flow from Hecla? The tranquillity of Hecla is against such a presumption.

When Lord Stuart de Rothsay was in Iceland, in 1833, one of the horses of his followers was lost, and its disappearance never could be accounted for. After his return to England, his lordship had a letter from the Governor of Iceland, acquainting him with the extraordinary fact, that the bones of the said horse had been ejected from the Geysers; into which it was, therefore, clear it had fallen unperceived by the attendants. Just as Mr. Barrow was leaving Liverpool, he received (through his father) a request from Mr. Murchison, of the Geological Society, that he would bring home some portion of these bones, "as an evidence of the effects produced upon animal and bony matter, when boiled in a subterranean caldron of liquid silica." It appears that the Governor had scarcely said so much as above represented, but that the horse had tumbled into one of the springs, and that part of its leg and hoof had been seen by a peasant. The spring proved to be a caldron, nearly at the boiling point, of water thickened by grey mud, and kept bubbling by the steam forcing itself through it. It being a year since the horse fell in, "the carcass must have long ago been boiled into gelatine." The peasant's account of the horse's leg is generally believed: indeed, the only wonder is, that horses, sheep, and cattle, do not more frequently fall into these pits, enticed by the luxuriant herbage growing around them.

The Reykium and Krusivik Springs

are near the south west coast of the island. The largest jetting spring at Reykium is situate at the base of a beetling mountain, between four hundred and five hundred feet high; it has two apertures, one of which sponts incessantly, from three to twelve feet high, whilst the other rises at least thirty feet, about fifteen times a day, with tremendous noise and velocity, discharging, according to Sir John Stanley, 59,064 gallons per minute. There are several other springs in this district, some of which throw water over the surrounding vegetation, which is thus covered with beautiful incrustations. The steaming apertures are too numerous and too like each other to be separately described; and the banks, of blue, yellow, and red bolus, are variegated with sulphur, and streaks of alum. The whole district is much exposed to earthquakes.

The principal Krusivik Spring is a caldron of boiling mud, about fifteen feet in diameter, which is in constant agitation, and is often thrown up to the height of six or eight feet: it is situate in a ridge of white clay and sulphur, upon mountain heights, the latter being beautifully crystallised, and sublimed with the steam which issues from crevices in the rock on every side, and with such violence and noise as to be heard at the distance of several miles. The chances of the crust of sulphur breaking, and the hot clay sinking, renders the walking over this soft and steaming surface very hazardous. Mr. Hooker nearly lost his life, by sinking to his knees in a semi-liquid mass of hot sulphur and bolus, and he narrowly escaped sinking to a much greater depth.

The Langafells

are hills which, at a distance, resemble mounds of fine sand or ashes. The district is chiefly noticeable for its lake, near which volumes of steam and smoke may be seen issuing. Mr. Henderson describes this plain to be intersected by beautiful serpentine rivers, and a long range of mountains to the eastward, over which Hecla rears its three snow-clad summits.

Stappen and Snæfell Yökul.

Snæfell Yökul (snowy mountain), which rises in one of the western peninsulas, near the village or factory of Stappen, is believed to be the highest mountain in Iceland; and the basaltic coast, with Snæfell in the background, is fraught with attraction for the geological observer. Stappen is very interesting for its numerous caverns, with roofs supported by columns of basalt, "many of which are also found strewn about, some lying horizontally in heaps, with their bases pointed to the sea, some standing upright, and others inclined at different angles, many of them curved, not merely at the joints, where the convex end of one piece is fitted into the concave end of the other, but bent throughout the whole length, like some of those on the island of Staffa," which Sir Joseph Banks has described as very much resembling the ribs of a ship. Mr. Barrow, from stress of weather, could not land at Stappen, which he observes was the more provoking, as there is every reason to believe, from the accounts already published, that the columns of Stappen afford the most convincing proof of their igneous origin, being here found buried in the midst of lava, above, below, and around them. Here the theory of the Neptunists, who long maintained the aqueous origin of basalt, fails to the ground." Sir John Stanley remarked to Mr. Barrow, that Snæfell, "from its very graceful form, and height, and snows, and situation, as the horn of the tongue of land dividing the two great bays of Bræd-fiord and Taxe-fiord, is a much more remarkable feature of the geography
of Iceland than Hecla; on account of its rise from a basaltic base, the contact of its streams of lava with the basaltic columns, and the ferocity with which subterraneous fires have broken and tossed about all the country in its immediate neighbourhood." The Yökul, Sir John Stanley apprehends, has been formed by repeated eruptions of lava, &c., from one crater, but the ground must have burnt in many places.

Sir John Stanley and his party made the ascent of the Yökul. The view was magnificent, and to the west the other peak of this high hill presented itself at the distance of about 1,000 yards, "the real summit." The northern view was that of the sea, quiet, as a child, as if it could never be in a passion; the east, high-peaked, mis-shapen mountains, (small, but compared with the Yökul;) and to the south we saw the sea, Stappen, and its harbour, in which our brig, the John, and another vessel, apppeared like two small specks. On the north-east hills, beyond an inlet of the sea, bounded the horizon, above which the sun had now got up in all his glory, and threw the shadow of our mountain so defined over the surface of the sea, to the south-west, and above its horizon in the air, that it was some time before we could thoroughly be satisfied that it was not another mountain hitherto concealed from us by the fog." Mr. Baine, one of the party, ascertained the height of Snæfell Yökul to be,

From geometrical measurement ... 4567 feet
By barometrical measurement ... 4534 "

Difference ... 33 "

Mr. Baine also took the elevation of Mount Hecla by geometrical measurement, and made it 4,300 feet, being seven hundred feet less than the height taken by Sir Joseph Banks's party, with a barometer by Ramsden.

The preceding details of the Geysers are somewhat minute, from our anxiety to rid the reader of more than one error respecting their economy. Thus, in a Cyclopedia, esteemed for the freshness of its information, the height of the Geysor column is stated at "above two hundred feet," or more than double the average. The height of Hecla is fixed at 5,210 feet, and that of Stappen at 6,262 feet, both numbers being, as we have shewn, considerably at variance with the facts.

SKETCHES OF EVENING PARTIES.
THE MORNING.

There is an old and well-known definition of our word rout, which describes its etymology as arising from the circumstance of families being generally routed out of house and home at such periods; and of a verity we think this quaint derivation beats all the tortured Saxon origins of dusty antiquaries entirely out of the field. If ever such a phenomenon did take place as turning a house out of its own window, it must certainly have been the case with the ill-doomea mansion that first endeavoured to cram an hundred people into its three small rooms originally adapted for a third of that number. Old English metrical ballads are extant, describing the very uncomfortable domestic economy of the day appropriated to a general wash, and the scanty culinary preparations thereunto attached; but these are minor evils compared to the overwhelming discomfort of the morning before our evening party.

If you are a quiet-loving man, we beseech you, as soon as you have finished breakfast on this eventful day, get out of the way as fast as you can. Walk in the park—go into the city—up the Coliseum—down in the diving-bell—see the eggs hatched—get blinded by the oxy-hydrogen light—ride backward and forward all day in an omnibus from the Bank to the Yorkshire Stingo—but stay not at home; for as soon as your servant has carried away the cloth, and rubbed the table with a magnified small-tooth-comb brush, to take out the light marks that the hot saucers have left behind, all tranquillity ceases. And now commences the scene of warfare on your household property—the complete boulevirement of all your tables, chairs, cheffoniers, and sideboards; the screwing of hooks into the cieling to hang lamps to; the arrival of the men with the said lamps; the fitting of wax candles to their various destinations, scraping the large ones down with a knife, and winding bits of letters round the small ones; the straining of jellies through inverted flannel footsacks, with all the other odd contrivances that custom has laid down as imperative to make your guests sick for a week afterwards.

To the quiet, inoffensive male part of the household community, the day preceding an evening's entertainment, is particularly disagreeable. Dinner is out of the question for them, as, indeed, for every one else; they may probably get some ends of French rolls, tips of tongues, overbaked pastry, and mould-adhesive blanc-mange. If they are intrepid enough to venture into the kitchen; but that is a fearful attempt, and none but the most fool-hardy will think of doing so. They cannot even fly to their own rooms for safety—all the superfluous furniture goes there as a matter of course, unless their house is not very large; and then the best bedroom is despoiled for the supper-table. This is often done; the wash-hand stand goes into the...